
IMPROVING TRANSMISSION CONTROL PROTOCOL PERFORMANCE

WITH PATH ERROR RATE INFORMATION

A thesis presented to

the faculty of

the College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Wesley M. Eddy

March 2004

This thesis entitled

IMPROVING TRANSMISSION CONTROL PROTOCOL PERFORMANCE

WITH PATH ERROR RATE INFORMATION

BY

WESLEY M. EDDY

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Shawn D. Ostermann

Chair of Electrical Engineering and Computer Science

R. Dennis Irwin
Dean, Russ College of Engineering and Technology

EDDY, WESLEY M. M.S. March 2004.
Electrical Engineering and Computer Science

Improving Transmission Control Protocol Performance with Path Error Rate Information

(64pp.)

Director of Thesis: Shawn D. Ostermann

The Transmission Control Protocol (TCP) is designed to reliably transmit data

over a wide range of network conditions while responding fairly to other traffic when

given an indication of congestion. TCP’s inability to distinguish between packet losses

due to congestion and those due to corruption, however, makes it perform inefficiently

on links with a high rate of packet errors. We describe methods for notifying TCP

senders of a network path’s packet error rate and ways for using this information to

increase TCP’s performance while still behaving reasonably in response to congestion

signals.

Approved:

Shawn D. Ostermann

Chair & Associate Professor of Electrical Engineering and Computer Science

ACKNOWLEDGEMENTS

The NASA Glenn Research Center’s Satellite Networks and Architectures Branch

was kind enough to fund me to do much of this work as an intern. Mark Allman

served as my mentor there and has provided an unending stream of useful comments

and criticicms, helped find and fix bugs in simulator code, provided opportunities

to hone my writing and presentation skills, and bought lunch on occasion. The

rest of NASA’s Satellite Networks and Architectures Branch has also given useful

feedback. Specifically, Mike Cauley can be credited for the comments that led to our

development of CETENA.

Shawn Ostermann convinced me to come to graduate school and served as my

advisor. His tips on writing and presentation have been tremendously useful, and he

provided me with a nice office and a teaching assistant position that allowed me to

think about networks rather than C++. His discussions in lab meetings have often

conveyed both technical information and philosophical perspective on issues as well.

Once in a while, he has even been known to answer email.

The past and present members of Dr. Ostermann’s Internetworking Research

Group have made time in the lab entertaining and never cried when I broke their

mail server.

Rajesh Krishnan was a useful resource for learning more about the original BBN

CETEN work and explained some of the design decisions that were made and ques-

tions that were left open.

5

TABLE OF CONTENTS

Page

ABSTRACT . 3

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

1 Introduction . 10

1.1 The Transmission Control Protocol 13

1.1.1 Reno TCP . 13

1.1.2 SACK TCP . 15

1.2 TCP Throughput Model . 16

2 Basis for Cumulative Explicit Transmission Error Notification 20

2.1 TCP Modifications for High BER Paths 20

2.1.1 Explicit Transmission Error Notification 22

2.1.2 Cumulative Explicit Transmission Error Notification 23

2.2 Estimating Packet Loss and Packet Error Rates 24

2.2.1 Loss Estimation AlgorithmS for TCP (LEAST) 24

2.2.2 Cumulative Explicit Transmission Error Notification 28

2.2.3 CETEN Simplification . 29

3 TCP Congestion Control Modifications with CETEN 32

3.1 Probabilistic CETEN TCP . 32

3.2 Deterministic CETEN TCP . 37

3.3 Simulation Results . 41

3.3.1 Implementation Details . 42

6

3.3.2 CETEN Throughput Gain . 43

3.3.3 CETEN Fairness and Friendliness 46

4 Conclusions and Future Work . 54

4.1 Conclusions . 54

4.2 Future Work . 55

BIBLIOGRAPHY . 58

APPENDIX

A LEAST Code . 62

A.1 Reno TCP LEAST Code . 62

A.2 SACK and DSACK TCP LEAST Code 64

7

LIST OF TABLES

Table Page

2.1 CETEN Header Fields . 29

3.1 Congestion Control Event Probabilities 34

8

LIST OF FIGURES

Figure Page

1.1 Stock TCP Performance from Padhye’s Model 17

1.2 Comparison of TCP Congestion Window Behavior 18

2.1 Cumulative Distribution of Actual Loss Rates on the NIMI Mesh 26

2.2 Accuracy of Reno LEAST Algorithm and Raw Retransmissions, Com-
pared to Actual Packet Losses . 27

2.3 Accuracy of DSACK LEAST Algorithm and Raw Retransmissions, Com-
pared to Actual Packet Losses . 28

3.1 CETENC Correct Guesses vs e/p . 34

3.2 Congestion Window Behavior After a Corruption Loss 35

3.3 Window Reduction Coefficient Function 38

3.4 Average Congestion Window Size, p = 2% 40

3.5 Throughput vs Relatative Error Rate, p = 2% 41

3.6 Percent Error in LEAST Estimate . 43

3.7 Simulation Topology . 44

3.8 Bulk-Transfer Goodput . 45

9

3.9 Bulk-Transfer Goodput (No Ack Loss) 46

3.10 Bulk-Transfer Goodput (With Congestion) 47

3.11 Fairness Indices - 20 Flows . 48

3.12 Fairness Indices - 100 Flows . 49

3.13 Aggregate Throughput - 20 Flows . 50

3.14 Aggregate Throughput - 100 Flows . 50

3.15 CETEN (Un)Friendliness . 52

4.1 Example MDF Function Candidates for Future Work 56

10

1. Introduction

In recent years, wireless networking technologies have been rapidly advancing on many

fronts. Notable examples are Bluetooth [41], the suite of 802.11 wireless Ethernet

protocols [19], and 3G CDMA cellular telephones [42]. Since by design the Internet

Protocol (IP) [33] can run on top of virtually any lower-level network, we see the

Internet coming to include a wide range of wireless networks. As the Internet becomes

a more important part our lives, having access to it at all times via the devices we carry

around in our pockets is a popular idea. Growing demand for Internet-enabled wireless

devices like cellphones, laptop computers, and personal digital assistants is one source

adding to the number of wireless links present in the Internet. Another comes in

geographic areas where “broadband” Internet access isn’t available from phone or

cable television providers, so in lieu of traditional wired links, many consumers must

use wireless terrestrial and satellite services for fast Internet connectivity. We also

see military operations increasingly depend upon mobile, wireless, IP-based networks.

NASA has also been using and testing Internet protocols in space environments, with

projects like the Interplanetary Internet [11] promising to one day add long stretches

of wireless hops into the Internet. High bit-error rates (BERs) are typical of most

wireless links, and may lead to a large number of packets being discarded due to

uncorrectable errors when the forward error correction (FEC) [4] in use is not strong

enough to repair all of the damaged bits. This is not a problem generally faced by

the wired Internet.

The transport protocol used by the majority of Internet traffic is the Transmis-

sion Control Protocol (TCP) [34] which lacks the ability to distinguish between packet

11

losses due to errors and those due to network resource contention (congestion). The

protocol’s goal is only to recover from packet losses by retransmission, so distinguish-

ing the causes of losses isn’t requiried. By design, standard TCP implementations

assume congestion as the cause of all packet losses and slow their sending rates in re-

sponse [3]. The motivation for slowing down for perceived congestion was that, at the

time, there were several congestion collapse [21] events during which the Internet was

unusable, and so fixing TCP to send more conservatively in the presence of losses was

important. This was not an indefensible decision on the TCP designers’ part given

that at the time most Internet links were wired, so it was a safe assumption that con-

gestion caused the vast majority of packet losses. This assumption, however, leads to

suboptimal performance when TCP is used over networks where packets are dropped

due to corruption and in which corruption losses are independent of the congestion

level. Since most applications in common use today (web, email, file transfer) run

over TCP, we see them perform more poorly than necessary over wireless networks.

Our goal is to extend TCP’s useful operational range to include networks with high

levels of packet loss due to corruption.

There are generally three ways used to improve TCP performance:

1. Make lower layer protocols do more work, for example link-layer retransmissions

[5], stronger forward error correction (FEC) [4], etc.

2. Insert processing into the network to transparently fix things, for example prox-

ies [30], spoofing boxes [20], protocol translators [12], etc.

3. Address shortcomings directly and fix the protocol itself. This may be done by

adding features (eg SACK [29]) and/or by modifying the TCP algorithms.

Although all three alternatives listed above are effective, we can provide some

evidence that the third option may be the best approach. Adding complexity to

lower layer protocols goes against much of the acquired wisdom in building complex

12

scalable systems [37], and middle-boxes that add complexity inside the network rather

than at the edge make debugging and maintenance difficult [9]. According to the end-

to-end principles [37], the edge of the network is where complexity belongs - in the

end-host TCP stacks. In this thesis, we propose such a solution.

Several middleware and end-to-end solutions requiring varying degrees of modifi-

cation to infrastructure and end-hosts have been proposed, studied, and standardized

to improve TCP’s performance in the face of high packet error rates [13]. We will

describe several of these and their benefits and drawbacks in chapter 2. Then we

describe means by which a TCP sender might passively obtain the total packet loss

rate with minimal state and how to integrate this with a simplified version of Cu-

mulative Explicit Transmission Error Notification (CETEN) [27] to closely determine

the rate at which packet losses are due to errors. In chapter 3, we outline two ways

this information can be used to modify TCP’s congestion control behavior in order

to increase performance without unjustly penalizing other traffic. We show both a

probabilistic and a deterministic algorithm and examine the performance of each with

regard to both gain in throughput and preservation of fairness to competing traffic via

simulations. The remainder of this chapter is a short introduction to the present-day

TCP in section 1.1 and its performance deficit when packet errors are introduced in

section 1.2.

The work presented in this thesis closely builds on the previous CETEN work by

researchers at BBN Technologies [27]. The specific refinements we provide over their

work are:

1. We introduced the LEAST algorithms to passively measure the total packet loss

rate of a network path (section 2.2.1).

2. We coupled LEAST with the CETEN error rate reports, and in doing so, ab-

solved the need for CETEN corruption rate reports (section 2.2.3).

3. We proposed and tested the CETENA congestion control modification, which

13

has some advantages over the original CETENC algorithm that the BBN work

presented (section 3.2).

4. We explored both modified TCP congestion control algorithms in the context of

fairness and friendliness with regard to competing traffic flows (section 3.3.3).

1.1 The Transmission Control Protocol

The goal of the Transmission Control Protocol (TCP) is to provide reliable in-

order delivery of data in a byte stream between two hosts. It is generally implemented

as an operating system service that programmers may easily use without knowing

all the details of its operation. For many years, TCP has been widely available in

modern operating systems, and its use in several popular Internet applications makes

it the dominant transport protocol on today’s Internet. Over time, many additions

and enhancements have been made to the original TCP specification to fix various

problems that have come up while maintaining interoperability with old versions (e.g.

congestion control [21], selective acknowledgements [29], partial acknowledgements

[15], etc). In section 1.1.1 and section 1.1.2, we discuss the common standardized

Reno and SACK variations of TCP.

1.1.1 Reno TCP

The name Reno comes from the Net/2 release of the 4.3 BSD operating system.

This is generally regarded as the least common denominator among TCP flavors cur-

rently found running on Internet hosts. Reno TCP’s features include slow-start, con-

gestion avoidance, and fast retransmit [40] which were carried over from the previous

Net/1 Tahoe release, and additionally the fast recovery algorithm [40]. These features

are all congestion control related. Originally TCP used the window advertised by the

receiver as the amount of data it would send unacknowledged. This was problematic

in that the receiver advertises how much buffer space it has made available in mem-

ory. Since bytes of end-host memory might be plentiful while router memory may not

be, the advertised window can be greater than the buffering capacity of the network.

14

A TCP sender pushing out a full receive window of data (or many senders pushing

many receive windows worth of data) will then cause packet losses as the network’s

buffering capacity is exceeded. After several instances of congestion collapse which

rendered the Internet unusable, an additional state variable, the congestion window

[21], was added to the TCP sender and the amount of outstanding data was then

limited to the minimum of the advertised receive window and the congestion window.

The congestion window’s purpose is to estimate the capacity of the network. It

starts out at a small number of segments and uses acknowledgements indicating suc-

cessful receptions (i.e. sufficient end-to-end capacity) in order to grow. There are two

states that determine the rate at which acknowledgements increase the congestion

window: whether exponentially in the “slow-start” state, or linearly in the “conges-

tion avoidance” state.

Slow-start refers to the phase used by TCP senders to quickly raise their congestion

window to a value approximating the capacity the network path is able to provide. A

round-trip time (RTT) is measured as the time between when a packet was sent and

when an acknowledgement was received for it1. In slow-start, the congestion window

doubles with every round-trip time2. A TCP sender leaves slow-start when it detects

a packet loss, entering the congestion avoidance state. In congestion avoidance, the

congestion window grows linearly with each RTT (at most one segment per RTT).

Losses occurring in either state result in the congestion window being reduced by

half, thus slowing the rate at which packets are sent.

There are two heuristics by which TCP assumes that a packet has been lost, the

retransmit time-out (RTO) timer and the duplicate acknowledgement counter. The

RTO timer provides a heuristic for how long to wait for a transmitted packet to be

acknowledged before assuming it was lost. The duplicate acknowledgement counter

1This is a very rough definition, in reality Karn’s algorithm [24] is employed to prevent error caused
by the ambiguity of determining what triggered acknowledgements of retransmitted segments.
2Many TCP implementations support delayed acknowledgements [10], where one acknowledgement
is sent for every b data packets received. This slows down the rate of congestion window growth [1].

15

tracks the number of times packets with the same cumulative acknowledgement are

consecutively sent by the receiver while other transmitted data remains outstanding.

When this counter exceeds some threshold (usually three), the packet after the one

whose receipt has been acknowledged multiple times is assumed to be lost and is

retransmitted. This is termed a fast retransmit because it doesn’t involve waiting for

the full RTO timer to expire.

After either a timeout or a fast retransmit, the congestion window is reduced.

The fast recovery algorithm in Reno allows it to grow back to its previous level

more quickly by using further duplicate acknowledgements after a fast retransmit to

increase the congestion window. This is a valid course of action since such acknowl-

edgements indicate that some subsequent segments after the lost one were successfully

received.

1.1.2 SACK TCP

The cumulative acknowledgements TCP uses are not capable of indicating if any

data in the transmitted window above the cumulatively acknowledged point was suc-

cessfully received. This can result in the sender retransmitting data that wasn’t lost,

which wastes time and utilizes resources inefficiently. By using the Selective Acknowl-

edgement (SACK) option, TCP receivers are able to report ranges of data above the

cumulative acknowledgement that were not lost and don’t need to be resent. This

allows the TCP sender to know exactly what holes in the sequence space need to be

filled and to efficiently retransmit the segments needed to fill those holes.

The SACK option is defined in RFC 2018 [29]. It could, in theory, be implemented

on any flavor of TCP, but generally it augments systems with at least Reno capabili-

ties, so we will use the name SACK TCP to describe stacks with both Reno features

and support for the SACK option. The SACK option is widely available in modern

operating systems (Windows 98 and 2000, Linux, Solaris, IRIX, OpenBSD, and AIX

to name several) and may be expected to become nearly ubiquitous in the future,

although implementing the proper exchange of SACK information is not equivalent

16

to implementing an efficient retransmission algorithm that uses the acquired SACK

information [8]. In addition, there is an enhancement to the SACK information that

a TCP receiver may implement called Duplicate SACK (DSACK) [17] which allows

senders to be notified of unnecessarily-retransmitted segments. The implementation

involved for sending DSACKs is trivial and currently available in some open-source

operating systems (for example, Linux), although again, intelligent use of received

DSACK information is not widely deployed.

1.2 TCP Throughput Model

The throughput a TCP sender can achieve is limited by the amount of data it

can have outstanding (unacknowledged). In terms of packets, this is the number of

maximum-sized segments that can be sent per round trip time. For simplicity, the

maximum segment size and round trip time are assumed to be fixed properties of

the given network path. The amount of outstanding data allowed at any time is the

minimum of the receiver’s advertised window and the sender’s congestion window. For

reasonable bulk-transfer performance, the advertised window (the amount of buffer

space the receiver is willing to devote to a connection) should be large [39], and we

generally assume it to be large enough that the throughput of a TCP connection will

be determined mainly by the congestion window as a measure of network capacity

unbounded by the advertised window.

With several reasonable assumptions, it’s possible to derive accurate models pre-

dicting the average congestion window over time. Padhye et al [31] develops one such

model and uses it to obtain a simple equation (equation 1.1) relating TCP throughput

to the overall packet loss rate.

B(p) =
MSS

RTT

√

3

2bp
+ o(

1
√

p
) (1.1)

In equation 1.1, B(p) is the throughput attained in bytes per second at packet loss

rate p, with maximum segment size of MSS bytes, round-trip time RTT seconds,

17

 1

 10

 100

 1000

 1e-05 0.0001 0.001 0.01 0.1
T

hr
ou

gh
pu

t (
M

S
S

/R
T

T
)

Packet Loss Rate

Stock TCP

Figure 1.1. Stock TCP Performance from Padhye’s Model

and b the delayed acknowledgement threshold (the number of data packets that im-

mediately generate an acknowledgement when delayed acknowledgements are used).

The o(1
√

p
) term is used to simplify the form of the equation and indicate that there

are less significant additional terms which are on the order of 1
√

p
. This relation is

represented graphically in figure 1.1 on a log-log scale.

Figure 1.1 and equation 1.1 clearly show that the achievable TCP throughput

falls off very quickly as the packet loss rate grows. The packet loss rate p has two

components, the congestion rate and the packet error rate, c and e respectively, such

that p = c+e. In some types of shared-access networks, a high level of congestion can

cause corruption as multiple sources attempting to transmit interfere with each other.

This is only true of a small subset of network types however, and more commonly

packets are corrupted independently of the congestion level. If corruption events

are uncorrelated to the congestion level, then TCP need only reduce its congestion

window as if the loss rate were c (where c < p), and can obtain better throughput

than with current congestion control algorithms slowing down for the full loss rate p.

Assuming that an application provides enough data to be sent to fill an entire

congestion window at all times, the integral of the congestion window over time

18

Stock TCP

W

W

max

max

Wmax
2

Wmax
2

A Smarter TCP

congestion congestion

congestion congestion

corruption

corruption

congestion

Figure 1.2. Comparison of TCP Congestion Window Behavior

yields the amount of data transmitted. This means that the area under a plot of

the congestion window should be maximized for best throughput. Figure 1.2 shows

how a modified TCP that doesn’t slow down for packet errors outperforms a stock

TCP by this principle, where Wmax is the buffering capacity of the network and

thus the maximum achievable TCP window. Congestion and corruption events are

marked in time on the x-axis. Since the x-axis is time, and the y-axis represents

the amount of data allowed to be outstanding, the area under the curve gives the

total amount of data transmitted which we can see is clearly larger for the TCP that

is able to distinguish corruption losses from congestion losses. This plot represents

a small slice of a connection, in a long-lived bulk-transfer situation, this scenario

will be repeatedly played out, meaning the difference in throughput over the course

19

of the connection might be quite dramatic. In this thesis, we specifically explore

bulk-transfer connections and means for keeping packet errors from reducing their

congestion windows to unnecessarily small values.

20

2. Basis for Cumulative Explicit Transmission Error

Notification

2.1 TCP Modifications for High BER Paths

In wireless channels with high bit-error rates, TCP packets may frequently be lost

due to corruption rather than congestion, and TCP’s response of slowing its sending

rate for all losses can severely and unnecessarily degrade performance. This TCP

problem is well known among the research community and several solutions have

been proposed attempting to mitigate it [28]. From figure 1.1 it is clear that reducing

the rate at which packet losses (p) cause congestion window reductions to be made

will lead to significant throughput gains.

The spectrum of solutions can be grouped into three categories according to Bal-

akrishnan et al [6]: split-connections, link-layer mechanisms, and end-to-end solu-

tions. Each of these three classes has its own advantages and disadvantages.

• Split-Connections

The split-connection approach hides a lossy link by sandwiching it between two

middle-boxes that locally buffer and retransmit lost data packets transparently

to the endpoints. This prevents the TCP endpoints of a connection from seeing

those losses. Packet errors on the link appear only as variations in the round

trip time. The main advantages of these solutions are that they are easy to

deploy by the owners of the lossy link without requiring coordination with end-

users, and they can repair holes caused by corruption more quickly than end-

to-end retransmission. These approaches can cause a large amount of variation

(jitter) in RTT which is a problem for TCP as it may lead to unreasonable

21

RTO timer values. In some retransmission-based schemes for correcting packet

errors, reordering of packets within a TCP stream may be introduced, which

can also be detrimental to TCP performance.

• Link-Layer Mechanisms

Link-layer mechanisms for improving TCP performance use either Automatic

Repeat Request (ARQ) retransmissions (similar to the split-connection ap-

proach), or heavy forward-error correction (FEC). The Snoop Protocol [7] is

one example of an ARQ technique that is TCP aware and locally buffers and

retransmits TCP packets that are corrupted. Such ARQ techniques suffer the

same problems as split-connection approaches, and if they treat TCP-carrying

packets differently than other IP packets, may introduce fairness and quality-

of-service issues among traffic classes. These would also prove ineffective when

traffic is encrypted at the network layer, such as in IPSec [26]. Strong FEC

is generally more friendly but reduces the amount of bandwidth available by

transmitting the same data multiple times in the form of redundancy bits for

error-correction , while also introducing some additional amount of buffering

and delay (dependent on the coding scheme and block size used) for encoding

and decoding.

• End-to-End Schemes

End-to-end schemes involve modifying only the end hosts’ TCP stacks. The

main advantages to this approach are that it may function without requiring

help from routers and middle-boxes (and thus be more scalable), it may be

easier to modify end-hosts than the network infrastructure, and it minimizes

the amount of “voodoo1” occurring in the network that could lead to other

unforeseen problems. The disadvantages are that end-to-end solutions require

1Any transparent components of the network can make debugging problems more difficult or cause
unexpected (seemingly magical) results when changes occur.

22

more testing because they optimize for an entire path rather than a single link

and rely on operating system vendors and consumers for deployment.

Of these three types of approaches, the end-to-end methods may in some sense be

regarded as the most correct as they have the least impact on the network’s design,

do not involve preferentially treating classes of traffic, scale well across heterogeneous

link technologies and administrative domains, and should be easily deployable via

operating system patches. For these reasons, the methods we develop in this thesis

are of the end-to-end variety.

2.1.1 Explicit Transmission Error Notification

The suite of solutions described by Explicit Transmission Error Notification (ETEN)

developed by Krishnan et al [27] are end-to-end approaches that involve modifying

TCP to understand control messages from routers that indicate packet corruption in

a TCP stream. The idea is that when a router notices a checksum failure or other

sign of corruption on an incoming packet frame, it can attempt to extract the address

of one of the connection end points and notify that endpoint before discarding the

packet, rather than silently throwing the packet away. With this type of system in

place, individual packet losses could be handled as corruptions if an ETEN message

was received or as congestion otherwise. Full deployment of Explicit Congestion Noti-

fication (ECN) [36] across a path would also allow such a decision in reverse, treating

losses as congestion given an ECN signal (such as an ICMP source quench packet)

and as corruption otherwise.

The advantage of per-packet ETEN mechanisms is that the correct congestion

control decisions can be made with good certainty, and even if ETEN isn’t fully

deployed through the path, the TCP will still benefit (although more conservatively).

One disadvantage is that it requires a change to the routers that need to identify and

notify sources before dropping packets. The major drawback however is that by the

nature of corruption, packets are mangled and it may not be possible to correctly

23

extract the source or destination addresses and ports due to corruption. It may not

even be possible to tell if these fields are in the portion of a packet that has suffered

corruption, making their validity ambiguous. Extraction of this information also may

be impossible if encryption methods like IPSec are in use.

2.1.2 Cumulative Explicit Transmission Error Notification

To overcome the difficulty of correctly identifying a corrupted packet’s source and

destination endpoints, Cumulative Explicit Transmission Error Notification (CETEN)

uses a distributed computation to propagate a packet error rate across the entire net-

work path of a connection. This rate can then be used by a TCP sender to help

determine how often it should be responding to congestion when it detects losses.

It doesn’t, however, provide per-packet loss information, so the TCP sender is still

unsure of the cause of any given packet loss, only knowing the probability of a packet

error. It also doesn’t provide explicit notification of packet losses, leaving that decision

to the standard TCP mechanisms of the RTO timer and duplicate acknowledgment

counter.

The original work we present in this thesis is based on the CETEN of Krishnan et

al [27]. This original CETEN work has routers relay a path’s overall rates of packet

loss due to congestion (c) and corruption (e) to connection endpoints. With this

information, after inferring a packet loss, the TCP sender probabilistically takes the

standard congestion response at rate c
e+c

and otherwise does not reduce its sending

rate. We propose and test several modifications to this scheme. Notably, we refine

the method for computing the error rate for a link, introduce a deterministic conges-

tion control algorithm in addition to the probabilistic version, and remove the need

to compute and forward the path congestion rate in tandem to the error rate by

introducing passive sender side algorithms for overall packet loss rate estimation.

24

2.2 Estimating Packet Loss and Packet Error Rates

In this section, we describe a set of algorithms that can be used to passively

measure the overall packet loss rate, p, as observed by a TCP sender. We also describe

the Cumulative Explicit Transmission Error Notification (CETEN) [27] scheme for

relaying packet error rates measured from inside the network to the end hosts.

2.2.1 Loss Estimation AlgorithmS for TCP (LEAST)

The Loss Estimation AlgorithmS for TCP (LEAST) provide a passive means

by which TCP senders can determine their end-to-end packet loss rates with high

accuracy [2]. Since this is done passively, it is without any alteration to the behavior

of the TCP stack. No extra bytes of traffic are injected by a sender running LEAST,

no modifications to well-known and debugged procedures are made, nor is the traffic

generated at all different from that of a TCP not performing LEAST measurements.

In section 2.2.1.1, we present the LEAST algorithm for Reno TCP and demonstrate

its measured accuracy, and in 2.2.1.2 we do the same for a SACK TCP with a DSACK-

capable receiver and show it to be even more accurate.

2.2.1.1 Reno TCP Algorithm

The basic idea behind LEAST is that the number of packets lost in the network is

equivalent to the number of needed retransmits made by TCP. A counter of the num-

ber of retransmitted packets is a reasonable rough guess, as TCP doesn’t retransmit

a packet unless there is some indication it may have been lost. Some retransmissions

aren’t needed, though, as the cumulative acknowledgment doesn’t give much infor-

mation when there are only a few small holes in a window of data rather than a large

continuous run of losses. In addition some timeouts or fast retransmits may be spuri-

ous due to large variations in delay, reordering, or loss of acknowledgments. However,

we can use clues from the stream of acknowledgments from the receiver to infer the

number of unneeded retransmits. By subtracting this value from the number of total

retransmissions we obtain an estimate on the number of lost packets. Dividing this

25

by the total number of packets sent yields the overall packet loss rate. The Python

programming language code we use to analyze the accuracy of the LEAST algorithms

using captured packets from live connections is available in appendix A.1.

For Reno TCP, a counter is kept indicating the estimated number of lost data

segments. This counter starts at zero in the beginning of a connection. The lost

segment counter is incremented each time a segment is retransmitted. If the RTO

time expires, then we keep counters of the number of duplicate acknowledgements and

the number of retransmissions. These two counters are kept until the sender leaves

loss-recovery and then their minimum is substracted from the lost segment counter.

This description is a somewhat simplified version of the complete algorithm detailed

in appendix A.1, but serves to show that the LEAST algorithms are computationally

very simple.

To validate our LEAST algorithms, we used a number of tests over the NIMI

mesh, where we traced both the sender and receiver sides of packet transfers of 5000

segments, using both Reno and DSACK TCPs. In post-processing, we are then able

to match up the packets sent and received to determine how many were lost and

compare this to the LEAST-computed value. Using the NIMI mesh gives us a diverse

sampling of network paths. Of the 14 hosts used, 8 are in the United States, 4 in

Europe, 1 in the Far East, and 1 in South America. Figure 2.1 illustrates the wide

range of actual loss rates we observed and gives some indication of typical loss rates

of Internet paths. Specifically, over 20% of the transfers experience no losses, while

0.6% see loss rates of over 10%. Allman, Eddy, and Ostermann [2] show that the loss

periods and loss distances also sampled a diverse range of loss behavior.

Of the NIMI transfers, 2546 of them were valid Reno connections. Figure 2.2

plots the cumulative distribution of the percent error in both the raw number of

retransmits and the Reno LEAST estimate from the actual loss rate as computed by

combining our sender and receiver packet traces. We see that over 56% of the transfer

loss rates as computed by LEAST are exactly correct, and only 3% err by more than

26

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

C
D

F

Fraction of Segments Lost (per connection)

Reno

SACK

Figure 2.1. Cumulative Distribution of Actual Loss Rates on the NIMI Mesh

10%. Considering the much larger error present in using the retransmission counter

as a rough estimate for the number of losses, it is clear that this method of inferring

unneeded retransmissions from the acknowledgment patterns is valid.

There are numerous sources of errors in the Reno LEAST algorithm, which are

mostly uncorrectable. These include: spurious retransmissions, dropped duplicate ac-

knowledgments, partial acknowledgments triggered by spurious retransmits, dropped

retransmissions, and spurious retransmissions that end a loss recovery period. These

events are (for the most part) fairly rare, although clearly not impossible or unex-

pected [2]. Given the minimal amount of computational overhead involved in running

LEAST, we feel that it comes sufficiently close in accuracy without any accounting

for these rarities.

2.2.1.2 SACK and DSACK TCP Algorithms

The LEAST algorithm for use with a DSACK TCP is the simplest we present.

With the DSACK option, duplicate receptions of the same data trigger transmission

of a DSACK block from the receiver indicating the range of data unnecessarily re-

27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-100 -50 0 50 100 150 200

C
D

F

Percent Error

LEAST
Retransmits

Figure 2.2. Accuracy of Reno LEAST Algorithm and Raw Retransmissions,
Compared to Actual Packet Losses

transmitted. The sender may assume to see one DSACK block for each segment with

duplicate data, assuming no loss in the ACK path. The number of retransmissions

minus the number of DSACK blocks seen is an excellent and easily computable esti-

mate of the number of packets lost. The code for an implementation of our DSACK

LEAST algorithm can be found in appendix A.2. For SACK TCPs without DSACK,

the algorithm is less accurate, but it helps that since use of the SACK option greatly

decreases the number of unneeded retransmissions, the retransmission counter alone

is a fairly accurate estimate of the number of lost segments.

Figure 2.3 plots the accuracy of the DSACK TCP LEAST algorithm over 2577

NIMI transfers, confirming that our estimate is very good for DSACK TCPs. Dropped

acknowledgments carrying DSACKs are the only known source of error in the DSACK

LEAST algorithm. Loss and reordering in the acknowledgment path are the primary

causes of error in the SACK without DSACK LEAST algorithm.

28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-40 -20 0 20 40

C
D

F

Percent Error

LEAST: DSACK
LEAST: SACK

Retransmits

Figure 2.3. Accuracy of DSACK LEAST Algorithm and Raw Retransmissions,
Compared to Actual Packet Losses

2.2.2 Cumulative Explicit Transmission Error Notification

In the Cumulative Explicit Transmission Error Notification (CETEN) work, Kr-

ishnan et al [27] outlines a simple means by which the packet error rate and the con-

gestion rate for a network path may be relayed to TCP senders with some assistance

from the routers in the path. The CETEN scheme involves defining an additional

packet header with four fields. This is most naturally tacked onto an IP packet as IP

options bytes. Table 2.2.2 describes the four fields in a CETEN packet header. As

implemented, CETEN uses 8 byte double precision floating point representations for

each field.

The ferr and fcong fields are initially set to 1 by the end-host sending the packet.

Routers in the network path track their loss rates due to both packet errors and

congestion. For a router numbered i, call these ei and ci. Equivalently these might

be stored as survival probabilities 1 − ei and 1 − ci. The survival rates for the entire

path of n links then are given by equations 2.1 and 2.2.

29

Table 2.1 CETEN Header Fields

Field Description

ferr The probability a packet survives corruption

in the forward direction (from source to destination)

berr The probability a packet survives corruption

in the reverse direction (from destination to source)

fcong The probability a packet survives congestion

in the forward direction

bcong The probability a packet survives congestion

in the reverse direction

1 − e = Πn
i=1(1 − ei) (2.1)

1 − c = Πn
i=1(1 − ci) (2.2)

These products can be computed sequentially by each routing node i by taking

the values of ferr and fcong in each packet and multiplying them by 1−ei and 1−ci.

In this way the complete path survival rates 1− e and 1− p are obtained by the end

hosts in ferr and fcong. The berr and bcong fields are then used to carry echoes of

the forward values in acknowledgments back to the sender.

2.2.3 CETEN Simplification

In section 1.2 we defined the overall packet loss rate p as being composed of the

congestion rate c and the packet error rate e such that p = c + e. With the LEAST

algorithms, a TCP sender can accurately determine p essentially for free (with no

additional help or information that isn’t already present). If a CETEN header can

be updated by routers along the network path, then the TCP sender will also know

e. Since we have an equation capable of yielding c from p and e, there is then no

30

reason for routers to compute and relay c as in the original CETEN TCP scheme [27].

Eliminating the need for having c encoded in CETEN packet headers effectively halves

their required length and removes some processing load from CETEN-supporting

routers by saving at least a multiplication operation per packet.

The size of the CETEN packet header required to obtain e
p
, the percentage of

losses due to errors, can be cut in half when used in conjunction with LEAST. The

congestion rate fields can be eliminated and only the error rate fields are needed.

Alternatively, we could leave the header size the same and double the precision of

the survival rates. Either way, we have an improvement over the old CETEN packet

header since we remove the redundant information that LEAST can provide. Sec-

tion 2.2.3.1 explores the differences of these two approaches further.

2.2.3.1 CETEN Error Rate Computation

A major difference between the LEAST-computed packet loss rate and the rates

inside the CETEN headers as originally described by Krishnan et al [27] is the time

scale over which the rates are valid. The original CETEN rates were computed via

an exponentially-weighted moving average with weight of 0.5, so it adapted very fast

per packet. On the other hand, LEAST generates a loss rate that spans the entire

length of a connection and is much less susceptible to rapid fluctuations. For this

reason, and for efficiency, a long-range reported error rate on the order of at least

many RTTs should be used by routers.

The original CETEN work leaves the exact means of error rate computation largely

as future work, showing results for an EWMA with weight of 0.5 computed per packet

and suggesting that a rolling average over larger windows of packets might work well

too. We find that with that weight, the EWMA moves too fast. Given a high

rate of statistical multiplexing between many connections sharing a link, it might be

difficult to properly set this value so that proper error rates are reported equally. The

advantage of having a quickly moving average is that it can be used more like a per-

packet ETEN mechanism since spikes coinciding temporally with a sender perceiving

31

lost segments likely indicate corruption losses. One problem with this is that during

spikes in the corruption rate, it might be difficult to get valid CETEN information

through without the information-bearing packet itself being lost due to the corruption.

The problem of the exact means for computing error rates is left as future work by

us as well. For our purposes, a steady long-term average is used. If packet errors are

uniformly distributed over time, this is a very easy parameter for an administrator

to measure and statically configure in a router. An even better solution would be to

have the router measure periodically over some suitably long time period and update

itself. For different patterns of packet error distribution, another method of error

reporting might prove superior.

32

3. TCP Congestion Control Modifications with CETEN

The methods presented in the previous chapter outline ways that a TCP sender may

become aware of its packet loss rate p and packet error rate e. The remaining challenge

is then in using this information to intelligently alter congestion control behavior. We

analyze the probabilistic algorithm presented by Krishnan et al [27] (CETENC) in

section 3.1 and evaluate its performance using simulations. Then, in section 3.2, we

present a deterministic algorithm (CETENA) and present simulation results testing

it across a realistic range of error rates. Finally we look into fairness and friendliness

implications of these CETEN-aware congestion control modifications.

3.1 Probabilistic CETEN TCP

The probabilistic CETEN algorithm for TCP congestion control we discuss here

is that originally described by Krishnan et al [27], and is motivated by the idea that

TCP should slow down when losses are due to congestion, but shouldn’t for error-

based losses. Due to our development of an alternative CETEN congestion control

approach, we refer to the original Krishnan scheme as CETENC for the weighted

coin-flip it uses. Each time a loss event occurs, a uniformly distributed random

number is drawn between zero and one. If this random number is greater than the

ratio e
p

then the congestion window and slow start threshold are modified by the

standard TCP algorithms and the lost segment is retransmitted, otherwise (if the

random number is less than or equal to e
p
) the segment is retransmitted without

taking congestion control actions. Thus over time the congestion window is reduced

at the same rate as congestion losses occur, while there is no slowdown at the same

rate with which packet errors occur. Although specific losses may not correlate with

33

the correct action (to reduce or not reduce the congestion window), the aggregate

behavior shows a proper number of attempts to be responsible and make a congestion

window reduction.

Code implementing this algorithm must be slightly more complex in order to

account for the possibility of errors in the combination of LEAST and CETEN esti-

mates, for example if the error rate reported is greater than the overall packet loss

rate measured. This can (and would) happen when a TCP connection is too young

to have seen enough losses to build up a decent LEAST estimate, while the CETEN

reported error rate is already measured over a long time scale. Another reason this

might happen is if the packet error rate reported is artificially inflated by either the

TCP receiver or some middle-box in an attempt to improve performance. In either

case, the estimates are unreasonable and so we may either take the conservative ap-

proach and make the stock TCP congestion window reduction, or assume that e is

very near p and not reduce. Valid arguments can be made for each case. We will

explore the aggressive behavior here in which we assume measured e > p implies error

in the LEAST measurement and e = p, so no congestion window reduction is made.

We choose this for the sake of looking at the maximum potential gain possible via

CETEN methods.

Although the idea behind CETENC is that over time, congestion window reduc-

tions are made at the proper rate, and individual decisions need not be correct, we

also examine CETENC on a per-decision basis. Table 3.1 lists the combined event

probabilities between loss causes and guesses. We can see that correct guesses occur

at the rate 2(e
p
)2 − 2 e

p
+ 1. We plot this in figure 3.1 and see that for all values of e

p

it is at least 50% or better.

In both cases when a congestion window reduction occurs, CETENC behaves

exactly as a stock TCP. The two cases where its behavior differs are those when no

slowdown is taken. In the case where a loss is due to corruption and no slowdown is

taken, there can be a legitimate gain in throughput. When a loss is due to congestion

34

Table 3.1 Congestion Control Event Probabilities

Packet Lost to Packet Lost to

Congestion Corruption

p−e
p

e
p

Slowdown p−e
p

1 − 2 e
p

+ (e
p
)2 e

p
− (e

p
)2

No Slowdown e
p

e
p
− (e

p
)2 (e

p
)2

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 C

or
re

ct
 G

ue
ss

e/p

Figure 3.1. CETENC Correct Guesses vs e/p

and a TCP doesn’t slow down, we may expect further losses to result (depending

on the degree of statistical multiplexing of flows at the bottleneck). This results in

an inflated packet loss rate p and unchanged e in addition to costly recovery time.

With an unchanged numerator and rising denominator, the decreasing ratio e
p

makes

the only potentially beneficial situation (corruption loss and no slowdown) much less

likely, since this occurs at the rate (e
p
)2. In the long run, these poor guesses could

add up to negate the benefit of a TCP using CETENC .

As an example demonstrating the performance gained by CETENC not slowing

down for a single corruption loss, figure 3.2 plots the TCP congestion window over

35

t
i

t
j

t
k

t
i

t
j

t k

CETEN-Aware TCP

Stock TCP

W

W

max

max

Wmax

2

Wmax

2

Figure 3.2. Congestion Window Behavior After a Corruption Loss

time between times ti and tk in both a stock TCP and a CETEN-aware one when

a corruption loss occurs at time tj and CETENC guesses correctly. Here, Wmax

represents the maximum congestion window the network path will accommodate (in

terms of MSS) and we assume for the purposes of this example that the TCP sender

is able to reach this congestion window both before and after the corruption loss. For

convenience, we also choose tj such that tj − ti = Wmax(b−1) so that each plot covers

exactly two full perceived congestion loss periods between ti and tk, where b is the

delayed acknowledgment threshold.

As an example we can compute the throughput gain of the CETENC TCP over

stock TCP in figure 3.2. We’ll use the abbreviations ∆t1 = (tj − ti) and ∆t2 = (tk − tj)

so that (tk − ti) = ∆t1 + ∆t2. Given the throughput between ti and tk as Ti,k =

∫ tk

ti
w(t)dt

tk−ti
,

36

we can set the percent gain of the CETEN TCP over stock as

∫ tk

ti
wc(t)dt

∫ tk

ti
ws(t)dt

− 1. To com-

pute the TCP throughput, we can use the fact that during congestion avoidance, the

congestion window grows linearly to obtain 1
b
(tk − ti) = Wmax, and

∆t2 = bWmax − Wmax(b − 1) = Wmax.

For the CETEN TCP then:

∫ tk

ti
wc(t)dt =

Wmax

2
(∆t1 + ∆t2) +

1

4
Wmax∆t1 +

1

4
Wmax∆t2

=
3

4
Wmax(∆t1 + ∆t2)

=
3bWmax

2

4

And for the stock TCP:

∫ tk

ti
ws(t)dt =

∆t1
2

2b
+

Wmax

2
∆t1 +

∆t1
b

+ Wmax

2

2
∆t2 +

∆t2
2

(Wmax −
∆t1
b

+ Wmax

2

2
)

=
2∆t1

2 + 2bWmax∆t1 + 2∆t1∆t2 + bWmax∆t2
4b

+
∆t2(3bWmax − 2∆t1)

8b

=
4Wmax

2(b − 1)(b − 1 + b + 1) + bWmax
2 + bW 2

max + 2Wmax
2

8b

=
Wmax

2(4b2 − 3b + 1)

4b

Given the current standard delayed acknowledgment threshold of b = 2, the

CETEN TCP would gain a factor of about 9.09% in throughput over a stock TCP

in this case. In the small time frame this example covers, we see e
p

seems to be be-

tween 1/3 and 1/4 so if events always played out this way, the CETEN gain would

only occur between 1/9 and 1/16 of the time, and in reality less than that since we

know that such guesses will actually become increasingly rare over time as the wrong

guesses inflate p.

37

The problem of wrong guesses affecting p is much less severe when several flows

share a bottleneck. This is clear in that when capacity is exceeded, it is likely that

multiple flows will be notified, in which case the aggregate slowdown may provide

enough slack to accommodate CETEN flows which have incorrectly not slowed down.

However, this raises concerns about fairness between competing flows, whether they

be homogeneously CETEN or some mix of stock TCP and CETEN flows.

3.2 Deterministic CETEN TCP

As an alternative to Krishnan et al ’s probabilistic CETEN [27], we present a de-

terministic algorithm. The idea is to choose a congestion window reduction coefficient

from between the one-half used by standard TCP where all losses are seen as con-

gestion and one if we assume all losses are due to errors. By basing the choice of

this reduction upon e
p
, we can arrive at a solution whose aggressiveness is suitable

to the relative error rate. In a stock TCP stack, the congestion window is reduced

by multiplying it by 1
2
, so we redefine this coefficient as a function of e

p
that varies

between this and one:
1+ e

p

2
. This function is plotted in figure 3.3. We call the value

computed by this function the Multiplicative Decrease Factor (MDF), and since it

is used to adapt the congestion window reduction to the relative error rate, we call

this adaptive algorithm CETENA to differentiate it from CETENC .

To further motivate use of this decrease factor, we observe that it is the expected

value for the window reduction of the CETENC algorithm, where the congestion

window is multiplied by 1 at frequency e
p

and by 1
2

at rate c
p

= p−e
p

:

E[X] = (1 ∗
e

p
) + (

1

2
∗

p − e

p
)

=
e

p
+

1

2
(1 −

e

p
)

=
1

2
+

1

2

e

p

=
1 + e/p

2
.

38

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

W
in

do
w

 R
ed

uc
tio

n
C

oe
ff

ic
ie

nt

e/p

CETEN TCP
Stock TCP

Figure 3.3. Window Reduction Coefficient Function

To theoretically evaluate the throughput gains this CETEN-aware TCP is capa-

ble of, we can modify Padhye’s TCP model for congestion window reductions with

CETEN-generated coefficients rather than 1/2. In this derivation we use the same

variables as Padhye et al [31], with the addition of r, the window reduction coefficient.

These variables are specifically, Wi the maximum congestion window reached during

the ith period between loss notifications, Xi the number of rounds of a full congestion

window of packets sent during that period, and Yi the total quantity of packets sent

in the period.

We start by changing the definition of Wi in terms of Wi−1 and Xi to reflect the

variable reduction
1+ e

p

2
= p+e

2p
.

Wi =
p + e

2p
Wi +

Xi

b

The initial equation for Yi also remains unchanged, with p+e
2p

substituted for 1/2 .

Yi =
Xi/b−1
∑

k=0

(
p + e

2p
Wi−1 + k) + βi

=
Xi

2
(
p + e

2p
Wi−1 + Wi − 1) + βi

39

E[Y] =
E[X]

2
(
p + 3

2p
E[W] + E[W] − 1) + E[β]

We also know that E[Y] = 1−p
p

+ E[W], E[β] = E[W]
2

, and E[X] = bE[W](p−e
2p

).

E[Y] = E[Y]

1 − p

p
+ E[W] =

E[X]

2
(
p + e

2p
E[W] + E[W] − 1) + E[β]

1 − p

p
+ E[W] =

bE[W]p−e
2p

2
(E[W]

3p + e

2p
− 1) +

E[W]

2

0 = (
3p + e

2p
E[W]2 − (1 +

2p

b(p − e)
)E[W] −

4(1 − p)

b(p − e)

We then use the quadratic formula to solve for the value of E[W]:

E[W] =
1 + 2p

b(p−e)
+
√

1 + 4p
b(p−e)

+ 4p2

b2(p−e)2
+ 83p+e

p
1−p

b(p−e)

3p+e
p

(3.1)

Compare this to the value of E[W] obtained from the Padhye model:

E[W] =
2 + b

3b
+

√

8(1 − p)

3bp
+ (

2 + b

3b
)2

Figure 3.4 plots the expected size of the congestion window for both TCPs with

varying e and p = 2%. The CETENA TCP always has a slightly larger window

here (although in reality being quantified in full segments, the window is the same

between stock and CETENA until e ' 0.5%), and thus CETENA is able to keep

more outstanding data and achieve higher throughput. Notice that this is especially

true at more severe error rates, as we would wish.

The transformation from the average congestion window E[W] to throughput

B(p, e) at given packet loss and error rates p and e is straightforward since B = E[Y]
E[A]

where A is the time interval between consecutive loss events and is given by E[A] =

(E[X] + 1)RTT . Since we know E[X] in terms of E[W] we then have:

40

 1

 10

 100

 0.0001 0.001 0.01
E

[W
] (

se
gm

en
ts

)

Packet Error Rate (e)

Stock TCP
CETEN TCP

Figure 3.4. Average Congestion Window Size, p = 2%

B(p, e) =
E[Y]

E[A]

=

1−p
p

+ E[W]

E[X] + 1

=

1−p
p

+ E[W]

bE[W](p−e
2p

)

This function is plotted in figure 3.5 with p = 2% set constant and the delayed

acknowledgment threshold b set to 2. The curve for stock TCP is flat as it has no

knowledge of e’s contribution to p and is given by equation 1.1, while the CETEN line

shows great gains as e approaches p. This clearly shows that in operating environ-

ments where packet errors dominate congestion losses, we can expect substantial gains

from using CETENA TCP over a stock TCP. We also notice that CETENA behaves

comparably to a stock TCP when such conditions do not hold and the relative packet

error rate is low. This implies that it behaves appropriately in low-error environments

as well, allowing devices implementing CETENA to move seamlessly between wired

and wireless networks (or error-free and error-prone networks) without changing con-

41

 1

 10

 100

 0.1 1
T

hr
ou

gh
pu

t (
M

S
S

/R
T

T
)

Relative Error Rate (e/p)

Stock TCP
CETEN TCP

Figure 3.5. Throughput vs Relatative Error Rate, p = 2%

gestion control algorithms. These theoretical results are encouraging, and in the next

section we validate them in simulation and look at some fairness issues.

3.3 Simulation Results

This chapter outlines several simulations performed in supplement to our theo-

retical results showing the throughput gain that CETEN TCPs may have over stock

TCP stacks and to explore the interaction between CETEN flows and normal TCP

flows sharing a link. We focus entirely on SACK TCP (with DSACK) here for two

reasons: scope and relevance. The task of evaluating a new congestion control algo-

rithm is massive enough without the burden of doing so for multiple TCP stacks of

differing capability, so we keep the scope down by only exploring CETEN modifica-

tions to modern SACK-based stacks and not older Reno-style ones. It can be argued

that non-SACK stacks are outdated and that gradually more Internet connections

are coming to use the SACK option1. Also, since applying CETEN patches to a

real world machine would provide the opportunity to add SACK and DSACK capa-

bilities, there isn’t much compelling evidence that a Reno-based CETEN is useful.

Initial experiences suggested that the gain from using a SACK TCP over a Reno one

1http://www.icir.org/floyd/sack-questions.html

42

was greater than that from using CETEN in the Reno TCP, further decreasing the

relevance of exploring a Reno CETEN.

3.3.1 Implementation Details

All of our simulations were conducted using a significantly modified version of

the ns-2 simulator2 version 2.1b9. In addition to fixing several small TCP bugs

and adding support for more verbose trace-files, our main modifications were to add

support for CETEN packet headers, the modified TCP congestion control algorithms

from chapter 4, and the TCP LEAST algorithms for Reno and DSACK TCP. Much

of the CETEN code was ported from the ns-2.1b7 patches available from BBN3 that

were used by Krishnan et al [27] to originally study CETEN. We modified these

patches to apply to the one-way TCP classes in ns-2 which are generally regarded

as less buggy and better maintained than the FullTcp class in which CETENC was

originally implemented in.

The LEAST implementation was written to run in real-time rather than as a post-

processing routine as the examples provided in appendix A. We then modified the

CETEN TCPs to be able to use the LEAST estimate for p rather than needing the

CETEN congestion rate c, as explained in section 2.2.2. Performance of our LEAST

implementation in the simulator is given in figure 3.6 where the mean percent error

between the least estimate and the actual packet loss rate is shown over 30 trials at

various programmed link error rates. This data comes from simulations involving a

single long-lived bulk-transfer TCP flow traversing a single lossy 5Mbps bottleneck

between two 100Mbps links. In all cases, the observed link error rates were negligibly

close to those programmed. We see that the DSACK LEAST algorithm comes within

1% of the actual loss rate across the entire range studied. The only loss of accuracy is

caused by dropped DSACKS, after we fixed a bug in ns-2 causing TCP sinks to delay

2http://www.isi.edu/nsnam
3http://www.ir.bbn.com/projects/pace/eten/index.html

43

-0.5

0

0.5

1

1.5

2

1e-05 0.0001 0.001 0.01 0.1 1

M
ea

n
P

er
ce

nt
 E

rr
or

 (
%

)

Configured Error Rate

DSACK LEAST

Figure 3.6. Percent Error in LEAST Estimate

acknowledgments that should carry DSACK blocks and then forget about sending

the DSACKs.

3.3.2 CETEN Throughput Gain

Since CETEN and LEAST are, by their nature, primarily useful and applicable

to long-lived flows with ample data to keep the congestion window constantly full,

as in bulk transfer applications, we focus on bulk-transfers in our simulations. The

standard ns-2 FTP application agents are used as our traffic sources. We then use

the TCP goodput (unique bytes sent per time unit) as a performance measure, since

this is the metric that matters to a bulk transfer application. With fixed segment

size and RTT, differences come directly from the congestion control decisions and

loss rate and distribution. All numbers presented here, unless otherwise noted, come

from averaging via arithmetic mean the results of 30 trials at each set of parameters.

Where shown, error bars represent a standard deviation of the data.

Our simulations use a simple dumbbell topology, illustrated in figure 3.7 consisting

of a pair of routers connected via a lossy link, between traffic source and sink nodes.

44

end-host2

10Mbps, 3ms

router2
5Mbps, 40ms

10Mbps, 3ms

end-host1

router1

Figure 3.7. Simulation Topology

Traffic sources and sinks are placed on the end-host nodes so that transfers run

in both directions and are started at random times within the first 30 seconds of

simulation time and run for 3600 seconds. We can place arbitrary numbers of stock

TCP, probabilistic or deterministic CETEN TCP, or Constant Bit Rate (CBR) traffic

generators on each of the end-hosts. The bottleneck link is 5Mbps (0.625 MBps), with

a 40ms one-way delay and queue depths of 150 packets in each direction. The packet

error rate of the bottleneck is programmable.

As a simple demonstration of CETEN TCP’s advantage over stock TCP in the face

of packet errors, we present figure 3.8, plotting the programmed link error rate of the

bottleneck against the average measured goodput. Only a very small number of losses

are caused by self-congestion of the link since there are no competing flows, with the

relative packet error rate e
p

approaching unity. Figure 3.8 confirms the intuition that

both CETEN TCPs would perform better than stock and that CETENA would best

CETENC . The margin of gain between CETENA and stock is roughly consistent

with that predicted by our theoretical development in equation 3.2. This helps confirm

both the validity of our theory and the correctness of our implementation.

Figure 3.9 shows results of the same simulations run with no programmed error

rate or cross traffic in the reverse direction (from end-host2 to end-host1), so that

there is no loss in the acknowledgment path. This is done to gauge the impact of

a perfect LEAST estimate in comparison to a non-perfect estimate caused by lost

45

100

1000

10000

100000

1e+06

0.01 0.1

G
oo

dp
ut

 (
B

ps
)

Packet Error Rate

Capacity
CETEN_A
CETEN_C

Stock Sack

Figure 3.8. Bulk-Transfer Goodput

acknowledgments. Comparing this to figure 3.8 allows us to see how lost ACKs

(creeping inaccuracy in the LEAST figure) degrade CETEN performance. We see

that both CETEN TCPs perform better when acknowledgments aren’t lost, although

CETENC converges towards stock TCP performance as the error rate grows. This

is partially explainable in that stock TCP’s goodput doesn’t degrade as fast with no

acknowledgment loss. Plausible real-world applications for CETEN (mobile wireless

devices, satellites, etc) often have highly asymmetric links where one direction may be

much lossier than the other, so simulations of this nature show CETEN’s usefulness

in a range of environments.

Figure 3.10 displays the results of the same experiment of figure 3.8 with the addi-

tion of bursts of UDP traffic in order to assess the ability of the CETEN algorithms to

maintain performance gains when congestion losses are introduced and not all losses

are due to corruption. The UDP traffic starts and stops over randomly generated,

exponentially distributed time periods with mean on-time of 2.5s and sends packets

at a constant rate of 1 Mbps when on. Five such UDP traffic sources are placed on

46

1000

10000

100000

1e+06

0.01 0.1

G
oo

dp
ut

 (
B

ps
)

Packet Corruption Rate

Capacity
CETEN_A
CETEN_C

Stock Sack

Figure 3.9. Bulk-Transfer Goodput (No Ack Loss)

each end node, in order to completely saturate the bottleneck if all are simultaneously

on. Aside from a vertical translation downwards due to the added congestion losses,

the shapes of the curves in figure 3.10 are consistent with those in figure 3.8. This

shows that even when multiplexed with other non-congestion responsive traffic and e

approaching p, CETEN is still able to produce gains.

3.3.3 CETEN Fairness and Friendliness

Ideally, gains in throughput for CETEN TCP flows shouldn’t come at the expense

of other flows sharing portions of the network path; gains should instead be deducted

from the fallow bandwidth that goes unused because of unneeded slowdowns due to

packet errors handled as congestion. We’ll explore this facet of CETEN behavior

under the term friendliness. This is not the same as the more common definition of

TCP-friendly [18], which means that a non-TCP flow sends approximately as much

as a TCP flow under the same network conditions. This definition wouldn’t be appro-

priate in our case, as TCP’s throughput is poor and we’re trying to overcome that.

47

100

1000

10000

100000

1e+06

0.01 0.1

G
oo

dp
ut

 (
B

ps
)

Packet Corruption Rate

Capacity
CETEN_A
CETEN_C

Stock Sack

Figure 3.10. Bulk-Transfer Goodput (With Congestion)

In addition, it is important that multiple competing CETEN TCP flows behave fairly

to one another by sharing the available capacity equally, or at least as fairly as stock

TCPs do. We call this property fairness.

3.3.3.1 Fairness

As a measure of fairness, we use Jain’s fairness index [23], computed as:

f(x1, x2, · · · , xn) =

(

n
∑

i=1

xi

)2

n ·
n
∑

i=1

x2
i

(3.2)

where xi represents the number of total bytes transferred by a particular connection

in a simulation and n is the total number of connections.

We use the same topology from section 3.3.2 adding multiple flows per end-node

to generate fairness indices for the two CETEN variants across a range of error rates.

We also try two levels of congestion, 20 flows and 100 flows. The flows used are

homogeneous in that we run, for example, 20 identically configured stock TCP flows

48

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 F
ai

rn
es

s
In

de
x

Packet Corruption Rate

Stock TCP
CETEN_A
CETEN_C

Figure 3.11. Fairness Indices - 20 Flows

in each direction in one simulation, and 20 identically configured CETENA flows in

another. Along with the fairness index, we also present the aggregate throughput of

all the flows. A good fairness index would mean little without a high utilization of

the available capacity. A means similar to that devised by Eddy and Allman [14]

for evaluating queue management algorithms could be used here to ensure that both

properties exist.

Figure 3.11 plots the averaged results over 30 trials at each error rate of a sim-

ulation with 20 competing flows in each direction. Examining figure 3.11 it is clear

that for 20 competing flows, both CETENA and CETENC are comparably fair in

comparison to the stock SACK TCP. At the lower error rates CETENA and stock

TCP are both nearly perfectly fair, while CETENC is slightly less fair, although it

certainly attains very respectable fairness indices. At higher error rates, both stock

and CETENC fall off rather quickly, while CETENA seems to maintain very high

fairness regardless of the error rate. In comparison, figure 3.12 showing the same

results for 100 flows, also indicates that CETENA stays fair through higher p than

49

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 F
ai

rn
es

s
In

de
x

Packet Corruption Rate

Stock TCP
CETEN_A
CETEN_C

Figure 3.12. Fairness Indices - 100 Flows

the other two TCP variants. Although in this case CETENA starts off slightly less

fair when the error rate is smaller, it is still well within bounds of adequate fairness.

Since one of TCP’s strengths lies in its ability to multiplex very fairly with itself,

these results for CETEN TCPs showing that the fairness property is preserved (and

perhaps even improved) despite a more aggressive congestion control algorithm seem

very encouraging.

From an aggregate throughput standpoint, the CETEN results are also quite

promising. Figure 3.13 shows average aggregate throughput in both directions for

the 20 flow simulations, and figure 3.14 does the same for the simulations with 100

competing flows. In the 20 flow case, even at low error rates, CETENA slightly

outperforms CETENC and stock TCP. As the error rate increases, the combined

CETENA flows still utilize nearly the full capacity of the link. Meanwhile, higher

error rates cause CETENC and stock TCP to fall off rapidly, with CETENC tol-

erating packet errors for longer, but eventually showing performance degradation of

an order of magnitude. Even with this hit, the combined CETENC flows still have

50

10000

100000

1e+06

1e+07

0.001 0.01 0.1 1

T
ot

al
 T

hr
ou

gh
pu

t (
B

ps
)

Packet Error Rate

CETEN_A
CETEN_C

Stock SACK

Figure 3.13. Aggregate Throughput - 20 Flows

10000

100000

1e+06

1e+07

0.001 0.01 0.1 1

T
ot

al
 T

hr
ou

gh
pu

t (
B

ps
)

Packet Error Rate

CETEN_A
CETEN_C

Stock SACK

Figure 3.14. Aggregate Throughput - 100 Flows

51

throughput of nearly another order of magnitude higher than the stock TCP flows.

Figure 3.14 tells much the same story, with the main difference being that the sta-

tistical multiplexing of even more flows allows the aggregate throughput to remain

high longer as the error rate increases. Once again, CETENA’s capacity utilization

is nearly immune to the packet error rate, falling off linearly with it because of the

unavoidable losses due to errors.

3.3.3.2 Friendliness

Next, we present an experiment to measure CETEN TCP’s friendliness towards

competing flows using stock TCP congestion control algorithms. The same topology

used in previous experiments is employed using a fixed 1% packet error rate on the

bottleneck, with 100 stock TCP flows. Since we’ve already seen that stock TCP is fair

under these conditions in section 3.3.3.1, the arithmetic mean of the number of data

packets sent by each flow is a meaningful average of the throughput a single flow can

expect over the simulation time. If CETEN is perfectly friendly to stock TCP sources

and all gains in throughput come from wasted bandwidth, then we should see that if

some of the 100 stock TCP senders are replaced with CETENA senders, the average

number of packets sent by each stock flow will remain unchanged. Figure 3.15 plots

this ideal friendliness, as well as data obtained from simulations where some of the

stock sources were replaced with CETEN sources. The results clearly indicate that

adding CETENA flows causes starvation of the stock flows, while adding CETENC

flows only negligibly impacts the stock flows.

Investigation into the cause of the stock TCP starvation reveals that it comes as

a direct result of a higher congestion loss rate due to the CETENA flows less severe

congestion response. The CETENA flows are so aggressive that they cause congestion

losses to start becoming more common. As the congestion rate c rises, stock TCP

flows make their window reductions at rate c + e while CETEN flows only make it at

c
c+e

. Since TCP throughput falls off with the square root of the inverse of this rate,

even small increases in c cause substantial differences in the stock TCP performance.

52

6000

7000

8000

9000

10000

11000

12000

13000

0 5 10 15 20 25 30 35 40 45

A
vg

. S
to

ck
 T

C
P

T
hr

ou
gh

pu
t (

B
ps

/F
lo

w
)

Number of CETEN Flows

Ideal Friendliness
CETEN_A
CETEN_P

Figure 3.15. CETEN (Un)Friendliness

The CETENA flows keep a larger congestion window than the stock TCP flows and

so have more outstanding data to generate duplicate acknowledgements and trigger

fast retransmissions. In this case, the packet loss rate is high enough that stock TCP’s

congestion window often isn’t large enough for fast retransmissions to be possible, and

it resorts to having RTOs generate its retransmissions. The idle time spent waiting

for the RTO timer to expire accounts for the majority of the stock TCP degradation

in throughput.

This brings up a philosophical question of whether we say the solution is to sacrifice

legacy stock TCPs that share a bottleneck with CETEN by saying that if they upgrade

to run CETENA they’ll receive a fair share of the available bandwidth bases on the

evidence in section 3.3.3.1, but otherwise their performance is poor anyway so we don’t

care about making it even worse. Or, we could attempt to cripple the CETEN-aware

congestion control algorithms in some way to make them less aggressive, meeting the

temporary goal of being friendly to current TCP implementations, while ultimately

causing performance in the future (where stock TCP might no longer run over wireless

53

links) or in custom environments to be less than optimally achievable. We can also

consider this a positive quality of CETENC , which although not showing the same

level of gains in the single-flow simulations, still is an improvement over stock TCP,

and seems to be much friendlier to stock TCP competition that CETENA.

One way to temper down CETENA would be to use a different, less aggressive

function to compute the MDF window reduction factor. Limiting it to the range of 0.5

to 0.75 for example would prevent it from being as aggressive. But if we believe the

previous results presented that show CETENA to be a good neighbor to itself and use

the proper level of aggression needed to fully utilize a link, then such a modification

is undesirable. Instead, we propose that this problem of friendliness to traffic using

legacy congestion controllers is better fixed through an active queue management

(AQM) algorithm in routers. The popular AQM scheme RED [16] is inappropriate

here as it shows the same congestion rate to all flows, which is entirely the problem.

Instead we need to use an AQM that shows a higher congestion rate to those flows

which are contributing most to the congestion and a lower congestion rate to those

flows that aren’t a factor. In effect, we have to put the “elephant” flows on a diet

so that they don’t starve the “mice”. Such an AQM scheme is provided by CHOKe

(CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows)

[32]. Rather than alter CETENA, we prefer to recommend the use of CHOKe in

CETEN routers. This approach for mitigating the CETEN fairness issues discovered

here is being explored as future work.

54

4. Conclusions and Future Work

4.1 Conclusions

We have introduced and described several changes to the originally proposed

CETEN [27] making it both more easily deployable and more effective at high packet

error rates. Introduction of the LEAST algorithms make the congestion header fields

redundant and unneccessary, so eliminating them allows us to ease both the header

overhead and computational overhead of deploying CETEN. We have shown a short-

coming in the probabilistic CETEN algorithm due to its inability to always guess

correctly, and we have introduced a deterministic algorithm that addresses this prob-

lem. Simulation results show this algorithm to perform substantially better. In

addition we have extended previous knowledge of CETEN to include that both pro-

posed congestion control modifications are fair with homogeneous traffic but may be

un-friendly to stock TCP traffic when sharing a bottleneck over a lossy link.

In particular, we have shown that CETENA both in theory and in practice works

well for mitigating the poor interaction between stock TCP and error-prone links.

This has been demonstrated in simulation for both single-flow scenarios, with and

without loss in the acknowledgement path, alongside non-congestion responsive com-

peting traffic, and in multi-flow environments where the utilization of aggregate flows

fully utilized available capacity even at high error rates while preserving an excellent

fairness index. We have also shown the original CETENC congestion control modi-

fication to have merit in fixing TCP for error-prone links, although to a lesser extent

than CETENA.

55

4.2 Future Work

There are many open issues regarding CETEN. One major question outstanding

is how exactly to compute inbound error rates at routers. Whether it is correct to use

a fixed or variable granularity of time over which to average the error rate is currently

unclear, as well as whether a fixed operator-configured error rate estimate may be

sufficient.

Another question still unresolved is how CETEN will respond to more “realistic”

error distributions. Packet error distributions in the real world seem to be heavily

dependent on the link-layer technology employed on a case-by-case basis. It is unclear

whether CETEN will work as well over less uniform distributions of packet errors.

Also various real world phenomena like fading channels that cause error rates and

distributions to quickly change may effect CETEN’s efficiency.

The multiplicative decrease factor (MDF) computing function to use with CETENA

provides another avenue of research. Alternative MDFs to the linear one we used here

should be studied, specifically ones that are less aggressive. The only stipulation is

that the function used should be continuous monotonically decreasing with domain e
p

from 0 to 1 and range lying between lower bound of 1
2

and upper bound 1. Some likely

candidates are plotted in figure 4.2 which shows MDFs of the form: MDF =
1+(e

np
)k

2
.

This is a more configurable formula than the one we used (MDF =
1+ e

p

2
), where n

and k are fixed at one, and thus left out for clarity. Adding the constants n and k

allows the MDF to be made less aggressive by raising n and k past one.

A key to the binary representation of the error rate is that it should be easily

computed upon by routing hardware, since we would like to impose as little overhead

as possible upon busy routers, and computation of the cumulative error survival rate

involves updating a packet field at each hop. The CETEN packet header uses 64-bit

floats to encode the survival probabilities. The floating point representation used

here isn’t necessarily the best encoding, but it is easily manipulable in hardware by

existing microprocessor instructions.

56

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

M
ul

tip
lic

at
iv

e
D

ec
re

as
e

Fa
ct

or

e/p

n=1, k=1
n=2, k=1
n=1, k=2

Figure 4.1. Example MDF Function Candidates for Future Work

It is likely that a more compact encoding is possible, and even one with less

precision such as 32-bit floating point may suffice, however we do not explore this topic

here. At 128 bits (16 bytes), the overhead on a 1500 byte packet is slightly larger than

1%. With this level of overhead, to make sending CETEN information worthwhile, a

modified TCP needs to outperform a stock TCP by at least 1%. As we shall show in

chapter 4, this is an easily attained goal when even modest amounts of packet errors

are present. A tighter encoding scheme would make this threshold even lower. We

could also send CETEN headers less frequently than once-per-packet to further make

their space and computational overhead vanish. This could be accomplished by only

polling for the error rate periodically or after a fixed number of segments, assuming

that reports will be representative of the rate over a long time frame.

As discussed thus far, CETEN is vulnerable to an “attack” by the data receiver.

If the receiver were to inform the sender that all the drops on the path were caused

by corruption and not congestion, then the receiver could induce the sender into

transmitting at an inappropriately high rate. Such an attack would allow a receiver to

57

obtain more than its share of the network resources at the expense of other connections

sharing the path. This attack is similar in spirit to the schemes discussed in [38].

Unfortunately, this avenue of attack is fundamental to the design of CETEN since

the receiver is the only entity in the path that can characterize the corruption status

of the last link in the path. We believe that heuristics can be designed to detect

egregious inflation of the corruption rate by the receiver (e.g., by comparing the

reported corruption rate with the estimated total loss rate, for instance). However, the

system will likely retain a vulnerability to subtle gaming no matter what mechanisms

are implemented.

A final more general class of future work in the CETEN domain involves thinking

about how much information routing nodes should provide to the network endpoints.

Several recent proposals have suggested that internal nodes provide the endpoints

with various pieces of information (e.g., ECN [35], XCP [25], QuickStart [22]). An

overreaching question is how much of this information should be provided? And,

if such information is provided, then what else might be useful for the network to

provide (e.g., information about packet reordering or asymmetry)? To some degree

this is a philosophical question about what level of intelligence to build into the

network. While more intelligent networks make things like congestion control easier

on endpoints, they may make the global network less scalable or stable in some way.

58

BIBLIOGRAPHY

[1] Allman, M. On the Generation and Use of TCP Acknowledgements.
Computer Communications Review 28, 5 (Oct. 1998).

[2] Allman, M., Eddy, W., and Ostermann, S. Estimating Drop Rates
With TCP.

[3] Allman, M., Paxson, V., and Stevens, W. TCP Congestion Control,
Apr. 1999. RFC 2581.

[4] Arazi, B. A Commonsense Approach to the Theory of Error Correcting
Codes. MIT Press, 1988.

[5] Avanoglu, E., Paul, S., LaPorta, T. F., Sabnani, K. K., and Gitlin,
R. D. AIRMAIL: A Link-Layer Protocol for Wireless Networks. Wireless
Networks 1, 1 (Feb. 1995), 47–60.

[6] Balakrishnan, H., Padmanabhan, V. N., Seshan, S., and Katz, R. A
Comparison of Mechanisms for Improving TCP Performance over Wireless
Links. In ACM SIGCOMM (Aug. 1996).

[7] Balakrishnan, H., Seshan, S., Amir, E., and Katz, R. Improving
TCP/IP Performance Over Wireless Networks. In ACM MOBICOM (Nov.
1995), pp. 2–11.

[8] Blanton, E., Allman, M., Fall, K., and Wang, L. A Conservative
Selective Acknowledgement (SACK)-based Loss Recovery Algorithm for TCP,
Apr. 2003. RFC 3517.

[9] Border, J., Kojo, M., Griner, J., Montenegro, G., and Shelby, Z.
Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations. RFC 3135, Internet Engineering Task Force, June 2001.

[10] Braden, R. Requirements for Internet Hosts – Commnication Layers, Oct.
1989. RFC 1122.

59

[11] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R.,
Scott, K., Fall, K., and Weiss, H. Delay-Tolerant Network Architecture:
The Evolving Interplanetary Internet, Aug. 2002. I-D
http://www.ipnsig.org/reports/draft-irtf-ipnrg-arch-01.txt (work in progress).

[12] Chandran, S. R. IP Transport Over Satellite. Kronos Communications
White Paper, http://www.kronos.com/iP3 white paper.pdf.

[13] Dawkins, S., Montenegro, G., Kojo, M., Magret, V., and Vaidya,
N. End-to-end Performance Implications of Links With Errors, Aug. 2001.
RFC 3155.

[14] Eddy, W. M., and Allman, M. A Comparison of RED’s Byte and Packet
Modes. Computer Networks 42, 2 (June 2003).

[15] Floyd, S., and Henderson, T. The NewReno Modification to TCP’s Fast
Recovery Algorithm, Apr. 1999. RFC 2582.

[16] Floyd, S., and Jacobson, V. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Transactions on Networking 1, 4 (1993),
397–413.

[17] Floyd, S., Mahdavi, J., Mathis, M., and Podolsky, M. An Extension
to the Selective Acknowledgement (SACK) Option for TCP, July 2000. RFC
2883.

[18] Handley, M., Floyd, S., Padhye, J., and Widmer, J. TCP Friendly
Rate Control (TFRC): Protocol Specification. RFC 3448, Internet Engineering
Task Force, Jan. 2003.

[19] IEEE Computer Society LAN MAN Standards Committee. Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
1999. In IEEE Std 802.11-1999 .

[20] Ishac, J., and Allman, M. On the Performance of TCP Spoofing in
Satellite Networks. In IEEE MILCOM (Oct. 2001).

[21] Jacobson, V., and Karels, M. J. Congestion Avoidance and Control. In
ACM SIGCOMM (1988).

[22] Jain, A., and Floyd, S. Quick-Start for TCP and IP, Oct. 2002.
Internet-Draft draft-amit-quick-start-02.txt.

[23] Jain, R. The Art of Computer Systems Performance Analysis, 1st ed. John
Wiley and Sons, INC, 1991.

60

[24] Karn, P., and Partridge, C. Improving Round-Trip Time Estimates in
Reliable Transport Protocols. ACM Transactions on Computer Systems 9, 4
(1991), 364–373.

[25] Katabi, D., Handley, M., and Rohrs, C. Congestion Control for High
Bandwidth-Delay Product Networks. In ACM SIGCOMM (Aug. 2002).

[26] Kent, S., and Atkinson, R. Security Architecture for the Internet Protocol,
Nov. 1998. RFC 2401.

[27] Krishnan, R., Allman, M., Partridge, C., and Sterbenz, J. P. G.
Explicit Transport Error Notification (ETEN) for Error-Prone Wireless and
Satellite Networks. Tech. Rep. No 8333, BBN Technologies, March 2002.

[28] Liu, C., and Jain, R. Approaches of Wireless TCP Enhancement and a New
Proposal Based on Congestion Coherence. In The 36th Hawaii International
Conference on System Sciences, Quality of Service in Mobile and Wireless
Network Minitrack, Big Island, Hawaii (Jan. 2003).

[29] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. TCP Selective
Acknowledgement Options, Oct. 1996. RFC 2018.

[30] Mitchell, O. R., and Hall, R. Building TCP Proxies for Layer 5 to 7
Inspection, Sept. 2003.
http://www.commsdesign.com/story/OEG20030916S0025.

[31] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J. Modelling TCP
Throughput: A Simple Model and its Empirical Validation. In ACM
SIGCOMM (1998).

[32] Pan, R., Prabhakar, B., and Psounis, K. CHOKe, A Stateless Active
Queue Management Scheme for Approximating Fair Bandwidth Allocation. In
INFOCOM (2) (2000), pp. 942–951.

[33] Postel, J. Internet Protocol, Sept. 1981. RFC 791.

[34] Postel, J. Transmission Control Protocol, Sept. 1981. RFC 793.

[35] Ramakrishnan, K., Floyd, S., and Black, D. The Addition of Explicit
Congestion Notification (ECN) to IP, Sept. 2001. RFC 3168.

[36] Ramakrishnan, K. G., Floyd, S., and Black, D. L. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168, Internet Engineering
Task Force, Sept. 2001.

61

[37] Saltzer, J. H., Reed, D. P., and Clark, D. D. End-To-End Arguments
in System Design. ACM Transactions on Computer Systems 2, 4 (Nov. 1984),
277–288.

[38] Savage, S., Cardwell, N., Wetherall, D., and Anderson, T. TCP
Congestion Control with a Misbehaving Receiver. Computer Communication
Review 29, 5 (Oct. 1999), 71–78.

[39] Semke, J., Mahdavi, J., and Mathis, M. Automatic TCP Buffer Tuning.
In ACM SIGCOMM (1998).

[40] Stevens, W. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms, Jan. 1997. RFC 2001.

[41] The Bluetooth SIG. The Bluetooth Core and Profile Specifications.
http://www.bluetooth.com.

[42] TIA/EIA/IS-200.1-A. Introduction to CDMA 2000 Standards for Spread
Spectrum Systems, Mar. 2000.

62

A. LEAST Code

The code in this appendix is written in the Python programming language but is

high level enough that it may be read as pseudocode. This is the same code used for

analysis by Allman, Eddy, and Ostermann [2], and is written for offline-analysis, as

opposed to in-stack code operating in realtime. An in-stack implementation for the

ns-2 simulator is available from the author of this thesis.

A.1 Reno TCP LEAST Code

seqno = ackno = highack = retransmits = dup_xmits = 0

in_rto_event = False

for pkt in snd_trace:

if pkt.isAck () and (pkt.AckNo () > highack):

highack = pkt.AckNo ()

if pkt.IsData ():

if pkt.SeqNo () > highdata:

highdata = pkt.SeqNo ()

else:

retransmits += 1

an RTO that initiates slow start-based loss recovery

if not in_rto_event and pt_isRTO ():

in_rto_event = True

recovered = recovered_orig = highdata

63

rto_segment = pkt.SeqNo ()

event_retrans = 1

event_dupacks = 0

continue

in slow start-based loss recovery

if in_rto_event:

if pkt.IsData ():

count retransmits in the event

if pkt.IsRetrans () and (pkt.SeqNo () < recovered):

event_retrans += 1

an RTO within the RTO event; extend the event

if pkt.IsRTO ():

recovered = recovered_orig = highdata

rto_segment = pkt.SeqNo ()

track new packets sent during recovery -- we need to

account for the last few duplicate ACKs

if not pkt.IsRetrans () and (highack <= recovered_orig):

recovered = pkt.SeqNo ()

else:

an ACK that terminates the RTO event

if pkt.AckNo () > recovered:

dup_xmits += min (event_dupacks, event_retrans)

in_rto_event = False

count duplicate ACKs received in the event -- but, not

64

any associated with the RTO segment (which are not caused

by needless retransmissions

elif (pkt.AckNo () == last_ackno) and (pkt.AckNo() >= rto_segment):

event_dupacks += 1

track the last ACK number

if pkt.IsAck ():

last_ackno = pkt.AckNo ()

least = retransmits - dup_xmits

A.2 SACK and DSACK TCP LEAST Code

highdata = retransmits = dup_xmits = 0

for pkt in snd_trace:

if pkt.IsData ():

if pkt.SeqNo () > highdata:

highdata = pkt.SeqNo ()

else:

retransmits += 1

if pkt.IsACK ():

if using_DSACK and pkt.DSACK () and WasRexmted (pkt.DSACK ()):

dup_xmits += 1

elif not using_DSACK and IsSACKRedundant (pkt):

dup_xmits += 1

least = retransmits - dup_xmits

